The Path Integral Approach to Financial Modeling and Options Pricing

نویسنده

  • VADIM LINETSKY
چکیده

Abstract. In this paper we review some applications of the path integral methodology of quantum mechanics to financial modeling and options pricing. A path integral is defined as a limit of the sequence of finite-dimensional integrals, in a much the same way as the Riemannian integral is defined as a limit of the sequence of finite sums. The risk-neutral valuation formula for path-dependent options contingent upon multiple underlying assets admits an elegant representation in terms of path integrals (Feynman–Kac formula). The path integral representation of transition probability density (Green’s function) explicitly satisfies the diffusion PDE. Gaussian path integrals admit a closed-form solution given by the Van Vleck formula. Analytical approximations are obtained by means of the semiclassical (moments) expansion. Difficult path integrals are computed by numerical procedures, such as Monte Carlo simulation or deterministic discretization schemes. Several examples of pathdependent options are treated to illustrate the theory (weighted Asian options, floating barrier options, and barrier options with ladder-like barriers).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Path Integral Approach to Financial Modeling and Options

Abstract. In this paper we review some applications of the path integral methodology of quantum mechanics to financial modeling and options pricing. A path integral is defined as a limit of the sequence of finite-dimensional integrals, in a much the same way as the Riemannian integral is defined as a limit of the sequence of finite sums. The risk-neutral valuation formula for path-dependent opt...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

A Path Integral Approach to Derivative Security Pricing: II. Numerical Methods

We discuss two numerical methods, based on a path integral approach described in a previous paper (I), for solving the stochastic equations underlying the financial markets: the Monte Carlo approach, and the Green function deterministic numerical method. Then, we apply the latter to some specific financial problems. In particular, we consider the pricing of a European option, a zero-coupon bond...

متن کامل

Modeling Gold Volatility: Realized GARCH Approach

F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...

متن کامل

Pricing Derivatives by Path Integral and Neural Networks

Recent progress in the development of efficient computational algorithms to price financial derivatives is summarized. A first algorithm is based on a path integral approach to option pricing, while a second algorithm makes use of a neural network parameterization of option prices. The accuracy of the two methods is established from comparisons with the results of the standard procedures used i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998